00 – Preface

The new CUDA.NET Tutorials category was created to collect and manage resources and materials for developers starting to work and develop with CUDA.NET library for various platforms.

The usual composition will be of articles on specific topics and gradually increasing complexity.

This post will include an additional Table of Contents for published articles as we go.

Table of Contents

  1. Preface

 

For any question or comment, please contact us through our email address: support (at) cass-hpc.com.

CUDA.NET 3.0.0 Released

Dear all,

We are happy to announce the release of CUDA.NET version 3.0.0.
This release provides support for latest CUDA 3.0 API and few more updates that will make programming with CUDA from .NET easier and faster.

Additions:

  • Support for CUDA 3.0 API
  • Added memset functions for CUDA class
  • Supporting new graphics interoperability functions
  • Improved generics support for memory operations
  • Added CUDAContextSynchronizer class

Improved memory operations
We employ GCHandle class to be used with generic memory copies in CUDA class. This method allows to work with every data type (existing vectors or user defined) natively in .NET. The implication is that now you can copy existing custom arrays of structures/classes (user data-types) to device with memory copy functions.

CUDAContextSynchronizer
This class was added to assist developers in multi-GPU and multi-threaded environments sharing the same device. It uses existing CUDA API to manipulate the context each thread is attached to and provides .NET means to synchronize between threads sharing the same device for different computations.
Find it under the Tools namespace, the documentation includes a description of how to use it.

We hope you will enjoy this release.
As always, please send us comments or suggestions to: support@cass-hpc.com.

Vicodeo™ – Accelerated Video Decoding Library

Dear all,

We are glad to introduce a new library for video decoding, Vicodeo™, featuring accelerated performance for faster than real-time decoding of H.264, MPEG-2 (and more) video streams – in managed environments (.NET / Java).

Video processing nowadays has become a computing intensive task. Being able to accelerate decoding and various processing tasks, opens the door for many types of applications and usage of video in life, from: high-quality films, security/surveillance cameras, live events, video conversations over the web and much more.

Our library provides many capabilities beyond real-time (+) decoding of 1080p (Full HD) streams:

  • Codec support: H.264, MPEG-2, VC-1 and more
  • Color space conversion from YUV 4:2:0 to RGB (accelerated)
  • Integrated parser for elementary/transport streams and video packets
  • Simple integration with DirectX or OpenGL
  • Faster than real-time decoding for 1080p even on low-end platforms
  • Optional immediate decoding of frames, without buffering
  • And more!

For more information: Video Decoding.

Encodeo™ – Video Transcoding on Demand

We are glad to announce a new service added to Hoopoe™ for video transcoding on demand.

Using the service allows users to transcode (convert) existing video files from various formats to the recent H.264 standard, at unmatched quality, speed and price.

Using GPU acceleration, we can convert HD movies and beyond at least x10 faster compared to existing equivalents.

Encodeo™ is not just a video transcoding service – it is possible to define advanced parameters for the transcoding process, such as:

  • Resolution
  • Bitrate
  • Filters / effect to apply on source video
  • and more…

If you are interested to hear more about the service and potential to use it, please contact us at: support@cass-hpc.com.

For more information: Encodeo™

OpenCL.NET 1.0.48 Released

Hello,

We are happy to announce the availability of the so long waiting OpenCL.NET 1.0.48 library.

This version aligns with OpenCL 1.0.48 standard, and fully conforms with latest NVIDIA drivers for OpenCL (and as well on supported platforms).

In brief, this release of the standard added few API functions and modified some, to truly allow heterogeneous computing on a single system. An application can query for the existence of multiple computing devices on the system, also by different vendors (recognize the CPU and a GPU as compute resources) regardless of the vendor. Such that consuming different computing resources can be transparent.

For further details about standard features and changes please consult Khronos website.

For OpenCL.NET page and download, click here.

As always, you are invited to contact us at: support@cass-hpc.com.

World Cloud Computing Summit 2009

The 2nd annual cloud computing summit is about to take place in Shfayim, Israel, between December 2-3, 2009.

Following last year success, the event will cover recent developments and progress in cloud technologies. Presenting with top-of-the-line companies active in this field, including (partial list): Amazon, Google, eBay, IBM, HP, Sun, RedHat and more.

Additional “hands-on” labs and workshops are offered during the event for participants that would like to learn more about cloud technologies and integration possibilities.

We are also presenting Hoopoe at the summit, for GPU Cloud Computing, and providing a workshop on GPU Computing in general and Hoopoe as well.

This event ends 2009 and symbolically the last decade, marking cloud computing as a major development that we are about to see more and more in the next years.

You are invited to join us during the event.
Agenda
Registration

OpenCL.NET Released

Hello everyone,

We are happy to announce the immediate availability of OpenCL.NET for the public.
This library provides a .NET implementation and wrapping of the OpenCL interface for GPU computing (and general computing as well).

Currently, the library supports revision 1.0.43 of Khronos (being the latest version of the standard).

Users may test the library with NVIDIA released drivers for OpenCL, or on other architectures as OpenCL should be supported on (Intel, AMD CPU etc.).

The API in this release was adapted to be cross platform in mind, and code, using the new SizeT construct for transparent handling of 32/64 bit platforms.

In addition, there is only one version of the library conforming to all operating systems who support OpenCL, regardless of Windows, Linux or Mac.

For any question, request, bug report or else, please contact us at: support@cass-hpc.com.

We hope you will find this library useful.

Annoucing Hoopoe – Cloud Services for GPU Computing

We are happy to introduce to you “Hoopoe”, a cloud solution for GPU computing.

You may have all expected it to be available sometime, and indeed it is.

Hoopoe provides a web service interface to communicate with. In the near future it will also provide machine level access to run specific applications like with regular CPU based clouds.

Partial feature list of the system:

  • CUDA Support
  • Executing CUDA kernels, FFT and BLAS routines
  • OpenCL Support
  • Executing OpenCL kernels
  • Fully secure – Check out

Take a further look at: Hoopoe™. The system will be open for alpha testing very soon so you are invited to register.